

Predicting FF CO₂ fluxes using top-down NOx and CO emissions estimated from multi-constituent chemical data assimilation

Kazuyuki Miyazaki, Kevin Bowman

Jet Propulsion Laboratory, California Institute of Technology

Dr. William Lahoz 1960~2019

- OH coupling (CH₄)
- Combustion process (NOx, CO, CO₂)
- Joint emission optimization

Reuter et al., 2019

The use of proxy species (NO₂, CO) for CO₂ flux estimates:
 Contain a strong signal associated with human activities

Silva and Arellano, 2017, Tang et al., 2019 AQ-GHG emission ratios can be used to understand emission processes (combustion type, new technology and regulation) and improve bottom-up inventories

Konovalov et al., 2016

 Emission ratios can be used in hybrid emission estimations (e.g., from top-down NOx to CO₂)

Multi-constituent chemical reanalyses

GHG inventories

Multi-constituent chemical data assimilation

AQ

MOPITT

(CO)

through ingestion of a suite of measurements from multiple satellite sensors

OMI (SO₂)

→ NOx, CO, SO₂ emissions

Miyazaki et al., 2012, 2013, 2014, 2017, 2019

Tropospheric chemistry reanalysis (TCR-2)

Two-hourly, 1.1°x1.1° resolution, up to 70 hPa level

- (1) understand the processes controlling the atmospheric environment
- (2) provide initial/boundary conditions for climate/chemical simulations
- (3) evaluate climate models and bottom-up emission inventories
- (4) suggest developments of models/observations (e.g., satellite concepts)

O₃ (AIRS/OMI)

SO₂ (NASA PCA)

NO₂ (QA4ECV)

NO₂ (QA4ECV)

O₃ (v6)

CO (v7J)

O₃, HNO₃ (v4.2)

Global NOx emission trends (2005-2018)

TCR-2 performance has been evaluated using various independent data (Miyazaki et al., in prep)

Global NOx emission trends (2005-2018)

2005-2010

2010-2015

Insufficient constraints at NH high latitudes for 2017-2018 (unhealthy OMI only). Will be revised using OMI+GOME-2.

2015-2018

AQ/Carbon co-evolution

How will changes in air quality mitigation impact carbon emissions?

Q1: Business as usual (BAU)

Q2: Carbon-only

Q3: AQ-only (CO₂ lock-in?)

Q4: AQ/Carbon co-reduction (renewables)

CO₂ flux prediction using top-down NOx emissions

Variations in emission ratios (CO₂/NO_x)

(gradual changes in technology and regulation)

+Kalman filter prediction and error estimation

Strong variations in emission factors for India, SE Asia, and the Middle east

→ Evaluation of emission inventories, understanding of emission processes

FF CO2 fluxes: 2018(predicted)-2017 (ODIAC)

How will ODIAC 2018 look like? 😏

CO₂ flux estimations: Multi-inventories integration

Multi-inventories mean (uncertainty-weighted) for 2018: 19.9±1.5 gC/m²/d

ODIAC 2005-2017 & predicted 2018 CO2 fluxes (PgC/yr)

MOMO-Chem: Multi-model, Multi-constituent CHEMical DA

<u>Multi-model SD</u>: 13–31% for industrialized areas and 4–21% for BB areas

Miyazaki et al., to be submitted

Multi-species constraints on FF CO₂ flux

Different aspects of the combustion technology are expected to affect those emissions

- NOx: strongly depend on the temperature of combustion (more NOx at high T)
- CO: can be regarded as a measure of the incompleteness of combustion processes
- SO₂: Linked to the burning of fossil fuels. Also, strong emissions from volcanic eruptions.

2011-2015 trends

Multi-species regressions using chemical reanalysis products will provide comprehensive constraints on FF CO2 fluxes and to improve bottom-up inventories

High-resolution multi-species joint emission analysis

Global TROPOMI NO₂ DA at 0.56 deg resolution

(Sekiya et al., poster)

GE S Chem

GCHP-EnKF developments at JPL

Bottom-up inventories

Conclusions

- FF CO₂ fluxes can be predicted for the most recent years based on Kalman filter trajectories of emission ratios, by combining bottom-up GHG inventories with top-down estimate of proxy species from chemical reanalysis, which extend GHG inventories.
- The multi-GHG inventories and multi-model chemical reanalyses (MOMO-Chem) provide integrated information on GHG/AQ variations and their uncertainty.
- The obtained long-term changes in emission ratios could suggest developments of multi-species bottom-up inventories, such as REAS and EDGAR.

Future works:

- Multi-species constraints and AQ-GHG joint emission optimizations though highresolution DA of the existing/future satellites
- Emergent constraints on the chemistryclimate system and carbon cycle

